GFDL Summer School [2012]

Radiation and Climate Applications

V. Ramaswamy

Geophysical Fluid Dynamics Laboratory

July 16, 2012

Factors involved in the Global Heat Balance

- Gradients in Temperature
- Amount and location of species (gases, aerosols and clouds)
- Radiative (absorption, emission, reflection) properties of species in the electromagnetic spectrum
- Radiative properties of the surface
- Convection (arising due to differential heating of surface and atmosphere)
- Large-scale dynamical flows caused by planetary rotation, topography, and land-sea contrast
- ☐ FEEDBACKS [Water vapor, surface, clouds]

Comparison CM3 AOD with sunphotometers

CM3 < 1.5 AERONET in US East coast

CM3 ~ AERONET in biomass burning, dusty regions, India

CM3 < 2 over Mega-cities (e.g. Bangkok)

Surface Clear-Sky Downward Shortwave Radiation

from Donner et al. (2011, J. Climate)

Comparison of Clear-Sky SW @ TOA

Term "RADIATIVE FORCING OF CLIMATE CHANGE" ===>

changes in the radiation balance of the surface-atmosphere system imposed by external factors

- with no changes in stratospheric dynamics;
- with no surface feedbacks in operation;
- no changes in tropospheric motions or its thermodynamic state;
- no dynamically-induced changes in the amount and distribution of atmospheric water.

"Global-mean" refers to globally-and-annually-averaged estimate.

FORCING - RESPONSE RELATION

$$\Delta T_s = \lambda * (\Delta F)$$

 T_s = global-mean, annual-mean surface temperature

 ΔF = global-mean, annual-mean radiative forcing evaluated at tropopause after equilibration of stratosphere

 λ = global-mean climate sensitivity factor (parameter)

relates to feedbacks in the climate system

Forcing goes roughly as the logarithm of the increase in <u>CO2</u>. For <u>methane</u>, the forcing goes as the square root of the increase. For <u>halocarbons</u>, the forcing goes linear in concentration change.

Clausius-Clapeyron equation

Saturation vapor pressure e_s :

$$e_s(T) = e_s(T_1) \exp\left[-\frac{L_v}{R_v} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)\right]$$

 $L_{\rm v}$ is latent heat of water evaporation $R_{\rm v}$ is gas constant for water vapor

Ci is cirrus Sc is stratocumulus

Numbers correspond to doubling of CO_2

	Process (1)	Process (2)	Process (3)	Total
Flux (W m ⁻²)	1.2	2.3	12.0	15.5
Percent	8.0	15.0	77.0	
$\Delta T_{\mathcal{S}}$ (model dependent)	0.17	0.33	1.7	2.2

Ramanathan (J. Atmos. Sci., 1981)

Forcing (preindustrial to present)

NETF_TROP ann inst chg (W/m^2) total 2000-1860 gbl mean = 2.777

NETF_SFC ann inst chg (W/m^2) total 2000-1860 gbl mean =-1.009

Soden et al. [Science, 2005]

Difference in Brightness Temperatures: 1860s to 2000s, and 1860s to 2100s

[Huang and Ramaswamy, 2009]

- Red: <2000-2004> minus <1861-1865>

- Blue: <2100-2104> minus <1861-1865>

 Green: unforced natural variability

•Results:

- window regions surface warming;
- CO2 bands –
 stratospheric cooling;
 rise in tropos. emission level
 (also O3 and CH4 bands);
- H2O bands –
 atmospheric warming
 is compensated by
 water vapor feedbacks.

Climate Sensitivity

Challenges

The END

The Components of Global Climate...

Figure 8.23 Temperature under radiative equilibrium (solid line) and radiative-convective equilibrium (dashed line) from calculations that include mean distributions of water vapor, carbon dioxide, and ozone. Adapted from Manabe and Wetherald (1967).

Components of the Coupled Atmosphere-Ocean-Ice Earth Climate System

Molecule	Spectral Range cm	Band Strength cm atm at 296K
CO ₂	550-800	220
O ₃	950-1200	312
N ₂ O	1200-1350	218
CH ₄	950-1650	134
CFCI ₃ (CFC11)	800-900	1828
CF ₂ Cl ₂ (CFC12)	875-950	1446
CF ₃ CI (CFC13)	1075-1125	1758

Total Outgoing LW radiation ~ 240 W/m²

1.3 Trapping of terrestrial radiation by current trace gases. The results are estimated from model computations and pertain to global-annual average conditions.

Gas	ΔF^*	Reference
	$(W m^{-2})$	· · · · · ·
H ₂ O .	55	Ramanathan & Coakley (1978)
CO ₂	20	44 39
Ozone (Troposphere)	1.5	Fishman et al. (1979)
Ozone (Stratosphere)	5	Ramanathan & Dickinson (1979)
CH4	1.7	Donner & Ramanathan (1980)
N ₂ O	1.4	44 39

^{*} ΔF is the reduction in the thermal radiation emitted to space by the surface-atmosphere system.

Radiative Forcing Components in 2005

(since preindustrial times, ca. 1750)

Fig. 10.7 Surface temperature obtained from a one-dimensional radiative-convective model versus fractional cloud cover. Results are shown for low, mid-level and high cloud cover. From Stephens and Webster (1981).